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Information theoretical performance measure for associative memories and its application to
neural networks
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We present a general performance measimfermation los$ for associative memories based on informa-
tion theoretical concepts. This performance measure can be estimated, provided that mean values of observ-
ables have been determined for the associative memory. Then the estimation guarantees a minimal association
quality. The formalism allows the application of the performance measure to complex systems where the
relation between input and output of the associative memory is not explicitly known. Here we apply our
formalism to the Hopfield model and estimate the storage capagitfrom the numerically determined
information loss. In contrast to other numerical methods the whole overlap distribution is taken into account.
Our numerical valuex,=0.1379(4) for the storage capacity in the Hopfield model is below numerical values
obtained previously. This indicates that the consideration of small remnant overlaps lowers the storage capacity
of the Hopfield model[S1063-651%99)02008-3

PACS numbd(s): 87.10+e, 07.05.Mh, 84.35:i, 89.70+c

I. INTRODUCTION Il. DESCRIPTION OF ASSOCIATIVE MEMORY

The advantage of associative memories where the data are In t.h'sf section we will present a general descrlp_tlon of an
Ssociative memory and show how to measure its quality.

stored in a spatially distributed way is the robustness again : .
noisy input data on the one hand. On the other hand, due §)\/e regard an AM as a stochastic system described by the

the spatial distribution architecture these memories recollec‘?mb"j‘b'I'tyM?ZI(S %) that the AM responds to an inpat
the associated data with some retrieval error. So a strict peRut of a set of key words with an outpus™ out of a sefR
son might conclude that the memory is useless. But in redf recollections. The probability depends gnpreviously
situations the associative memoi#M) is often used as a learned pattern(¢*, 7)., (€%, ")) each of them consist-
preprocessor followed by some classification or decision proi’d of a key word ¢ and a recollection »*
cess. For such processes a faulty output of the associati§=(&"---.€), 7:=(7",...,7"))
memory still could be valuable. In this paper we derive a
gene_ral priterion for the q.uality of an associative memory 2 M, (s”|s%) =1. 1)
considering also large retrieval errors. s 7

Section Il starts with a general description of an associa-
tive memory. Based on this description we formulate the realhe mapping assigning every pa#, ») its transition prob-
information loss. This quantity is by Shannon’s theoremabilities M, ,(s*|s°) is usually called the “learning rule.”
[1,2] closely related to the minimal expected number Ofig e 1 sketches the typical situation an AM is used in.
yes-no questions needed to specify the recollection when the |, ine learning process one paif, {) is chosen according

AM's output is given. In the literature it is also known as to a probability distributiorP, and learned by the AM. After

conditional informatior{1]. the learnin rocess has finished the association process
Unfortunately in most of the cases the associative 9gp P

memory is too complex and it is not possible to calculate theStar.tS' A pattemn indey e {1, . " 'P} Is chosen with prolb-
real information loss. Therefore we show, in Sec. lll, howab'“ty lp %ndM the key wordé” is sent through a noisy
the real information loss can be estimated from above b)?hannel/\/(s |£9).
measuring expectation values of observables.

In Sec. IV we choose the overlap between the associative 2 NK'|k)=1 for every keK. (2)
memory’s output and the recollection as a concrete observ- k'eK
able and give an upper bound of the information loss both fo
the averaged overlap and the whole spectrum of the overla
The results of Sec. IV are then appli€8ec. \j to a special
neural associative memory model—the Hopfield mdd@gl

The AM receives a noisy versia? of the chosen key word
%" with probability A{s°| &#). The patterns should have been

First we argue that the whole overlap spectrum is necessal (§’Q)

to characterize the storage behavior. Then the informatio, - - - _, " . y - "
loss is estimated from the numerically determined overlapl';a)‘;”f:{_eK. N EEE M, S_.G\Ii i €R
spectrum. The improved sensitivity of our estimate of the--'= - 2. 7 questions

_____ -

information loss allows for a finite size analysis leading to a
precise numerical determination of the storage capagity FIG. 1. Association of single patternst4,»*) previously
the Hopfield model. learned by the AM.
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learned by the AM in a way that the associated recollectiorwith P(r)=(1/p)2, ,Py(7)d; ,» is the Shannon entropy

s” contains much information about=7*. In order to  pelonging to the experiment where the AM’s output is un-
quantify this information we imagine a person at the outputknown[pp( 7)==:P (& 7)].

of the AM knowing s” and having the task to specify the ® can also be used to measure the likelihood of two dy-

original recollectionr. To achieve this goal the person is namical systems, where one of them is a “black box” and
allowed to ask yes-no questions according to a question strafpe other is established to model the black bo®(f,s*) is

egy S TTiS quexstio? strategy assigns every pais() th? the probability that the black box and the model are in the
number leg(r|s”) of yes-no questions needed to SPeaify garasr and s*, respectively,®(P) can directly be inter-

for givens”. . _ . preted as a quality measure for the model.
To measure the association quality we imagine an experi-" n previous publications on neural associative memory
ment consisting of one learning process followed by a certalr[14,5] a quantity called “missing information” was suggested

number of association processes. For this experiment, g \oqarq small retrieval errors. This quantity is an estimation
average number of yes-no questions needed to Specify o¢ q,(py with respect to special observables. This will be-
whens” is known does not depend on the number of ass0gome clear in Sec. IV. In the next section we will show how
ciation processes. It is given by an estimation of the real information loss is connected to
everypossible choice of observables. Here the real informa-

a(S)=>, P(r,s*)leng(r|s”), (3y  tion lost in the associati_on process.is transparently worked

rs” out and by Shannon'’s noiseless coding theorem related to the

real information lossb(P) [see Eq.6)].

where
1 I1l. ESTIMATION OF THE INFORMATION LOSS BY
P(r,s*)= E 2 Pp(g, Z7)T§,77(Sw|§'u) 577;” , (4) MEASURING OBSERVABLES
ey o In most of the cases the relatiov ,(s”|s°) between the
with input s, and the outpus™ of the AM is too complex to
calculate the real information loss. Therefore we show in this
. 10 0 section how to estimate the real information loss from above
Te (s |§”)‘:20 Mig,)(S7[SIN(S|67). by the knowledge of mean valueg; of | observables
° Oi(r,s*)
If we define (log:=10g,)
E=(0)=2 P(r,s)O(r,s), i=1,...1. (9
®(P):=— > P(r,s")logP(r|s®), 5) "
r,s” These equations together with the normalizatiorP¢f,s™)
) i B build the constraints for the maximization of the real infor-
with the conditional probability mation loss.
We defineW to be the set of mappings frolRXR to
p(r|s°°)zp(rysoc)/ > P(r,s%), 10,1 and the functionatb(P) with PeW is given by Eq.
T (5). The constraints form the restricted set of mappings:
Shannon’s noiseless coding theorésae Ref[2], pp. 15 and Ape={PeWIE;=(0)), i=1,...], 1=(1)}.
16) yields (10
®(P)=minqg(S)<d(P)+1 (6)  The maximization of the information loss with respect to the

constraints means the maximization®fon the setd, g .

where the minimum is taken over all possible question strat- We Will use the following theorem to solve this maximi-
egiesS. zation task.

Thus®(P) has something to do with the minimal average ~ Theorem IIl.1. For every distributioP™ e Ao g the fol-
number of yes-no questions needed to specify the origindPWing statement holdsP* maximizes® on Ao e if and
patternr when the outpus” of the AM is known. We will ~ only if there exist real numbers, ... \; andZ>0 such that
therefore takeb(P) to measure the quality of an AM and the conditional distribution oP* has the form
call it “real information loss.” Now the stored information

|
. . 1
I is defined as P*(r|s”)= Zexp( - AiOi(r,s“’)) . (11)
=1

ls=p[Ir—P(P)], ()
Since P*(r|s”) depends exponentially on the observables
which is the information about the patterns available fromand P* € Ay g, ®(P*), we get for everyP e Ay g the in-
the AM. Here equality

|
|nz+_21 )\iEi)/InZ. (12)

|R=—Z P(r)logP(r), (8) O(P)<D(P*)=
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This inequality allows the estimation of the real information  If the overlap distribution has a complicated struct(ice

loss from above. example, in the Hopfield mod¢r—9)) it is not sufficiently
The relations(11) and (12) are similar to the entropy represented by its average. In these situations both Eq.

maximization subject to observable constraints well known(16) and the quantity discussed in Reff8,5] lead to a poor

in the literature[6]. One direction of theorem IIl.1 can be estimation of the real information loss. Therefore we choose

proven with the theorem about the Lagrange multipliers ancs our second example the observables

the other direction uses the inequality bog(x—1)/In 2. The

Lagrange multipliers\,,...,\, and InZ result from the con- On(r,8%)= ONm,sr s 17
straints[Eqg. (9) and the normalization oP(r,s*)]. _
The real information loss differs from the conventional where m=1—2k/N, ke{0, ... N}. Averaging these ob-

entropy because the logarithm in E&) has the conditional Servables leads to the overlap distribution
probability P(r|s”) instead ofP(r,s”) as argument. As a B w
consequence the maximal value of the real information loss (M) =(On(r.s7),
®(P*) depends only on theonditionalprobability distribu-  \\here thep(m)’s have to be identified with thg;’s in Eq.
tion [see Eq.(12)] and a probability distribution satisfying (9).

the constraints and maximizing is determined uniquely In order to apply theorem 1Il.1 we write the conditional

only up to its conditional distribution. distribution in the form of Eq(11):
Since in practical applications the true distribution

P(r,s”) will not be known, one uses the measured valdgs 1

of the observable®;(r,s*) and applies the theorem I11.1 to P*(r|s”)= ZeXP( =2 Mm)Oy(r,s7) |, (19

obtain via EQ.(12) an upper bound fofP(P). In the next "

section we demonstrate this procedure by tinepresenta- \herez and\(m) have to be chosen such thet (r,s”) is

tive) examples of observables. normalized and satisfies the constrai(it8). The normaliza-
tion and the constraintsl8) are satisfied if

(18)

IV. THE OVERLAP

Z>0
For the examples of observables we consiges” to be
Ising spin configurations, e.gR={+1,—1}". An obvious and
observable for estimating the information loss is the overlap (m)
m
N e M=z (20
N - g(m)
o(r,s )—NE rs; (13)
=t with
between the AM’s outpus™ and the original recollection. N
For given average g(m):((N—mN)lz)'

m=(0(r.s")) (14) Now theorem I11.1 states that the distributi@t®) maximizes

of O, with m#=+1 we choose for P*(r,s*) the real information loss. The upper boud®(P*)=i N

=P(s*)P*(r|s”) the conditional distribution to be with
" 1 g(m)
1 ——C i = — —
Pr(rfs”) =1 5 (1+ms'r)) (15) =N p(mlog "5 (21)
with arbitrary P(s*)>0. for the real information loss can be obtained from ELR).

Since bothP*(r|s”) and O(r,s*) depend only on the To see the possibly substantial improvement of the bound
productr;s”, the constraintl4) is satisfied. The distribution (21 over Ed.(16), we expandg(m) for large N according

(15) can be written in the forn11) with m= —tanh\ and Stirling’s formula and obtain

Z=[2 coshit/N)]V, which leads by theorem IIl.1 to the upper 1 1

bound® (P*)=i=N with i,=> p(m)|1- 5 (1=m)log(1—m)— > (1+m)
m

=1~ 5[(1~log(1~m)]~ 5[(1+Mlog 1+ )]
(19

for the real information los$(P). The “missing informa- The first term is a sum ovem of terms as in Eq(16)
tion” for neural associative memory discussed in Rg4s5]  weighted with the probabilityp(m). Since the right hand
would result from theorem lIl.1 if the average network andside of Eq.(16) is a concave function af the first term of
pattern magnetization are determined in addition to the averEg. (22) is always less than or equal itg because of Jensens
age overlap(14). These additional observables lead to aninequality. The second term in E2) is always bounded
upper bound of the real information loss slightly less thanfrom above by log{+1)/N which becomes negligible for
Eq. (16) for biased patterns. N—oo. Thus the determination of the whole overlap distri-

Xlog(1+m)

1
- N; p(m)log p(m). (22)
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bution p(m) may reduce the upper bound considerably, es- TABLE I. Dﬁerent results for the storage capacity,, the
pecially if the overlap has a bimodal distribution. The upperaverage overlam, and upper bounds for the information loss per
bound (21) for the real information loss cannot be derived SPinic atac. In the upper part of the table the analytical results of

from the considerations in previous publicatiddss). the replica symmetryRS), the one(1RSB, and the two step
(2RSB) replica symmetry breaking calculation are presented. In the

V. APPLICATION TO NEURAL ASSOCIATIVE lower part numerical estimates are given.

MEMORIES

RS[7]  1RSB[13] 1RSB[14] 2RSB[14]

We want to apply our formalism to neural associative

. . c 0.137905 0.144 0.138186 0.138187
memories. Thgse memorles.usgally recall the storeq datarﬁ(ac) 0967417 0.982 0.966777 0.966776
with some retrieval error, which is related to the quality of
the associative memory. In our formalism the retrieval error e 0.120078 0.074 0.121967 0.121970
is quantified by the real information loss. As an example of [8] [9] present paper
neural associative memory we choose the Hopfield m@el «, 0.1431) 0.142@15) 0.13794)
and estimate its storage capacity with the help of the numeri-, 0.1217)

cally determined overlap spectruiid8). In the Hopfield
model the pattern statistic is given B(¢, Z;)=2"’N5§,,,,
which means autoassociation of equally distributed patternsipper bound for the real information loss. The error ofias
The network is a dynamical system evolving according to been calculated from the fluctuation of the mean valyes
calculated for one set according to H@1). In Fig. 4 the
=sgnh;, (23 upper bound of the real information loss per spin is presented
_ for different system sizes as a function af
with We have no theoretical founded finite size scaling law as
used in Refs[7-9]. However, based on the system sizes
hitzz WijS} ' (24)  investigated here we can show the following finite size law:
j#i If for a given system sizeN the information loss can be
) i described by straight linesiy(a)=ay+bya for «
where only one neuron is updated per time s@gynchro- g 1375 0.145p then there exists a loading parameter
nous dynamics The patterns are stored in the synaptic ma-ynere the information loss for all system sizés=2000 is
trix w by the Hebb rulg3,10]: equal to some valuk, .
p First we determine a reference straight line by fitting in-
Wi :i 2 grer. (25) dependently offsety and slopeby of the information loss
UONZL for the simulated system sizes and extrapolate them to infi-
nite system sizes. The fitted slopes and offsets are plotted in
This learning prescription is motivated by Hebb’s postulaterig. 2 vs 1N. From Fig. 2 we see that all system sizes except
about learning11]. The convergence of the network state  the smallest oneN=1000) satisfy the scaling law
to a fixpoints™ is guaranteed because of the symmetry of the

synaptic matrix. The stable fix poist™ is then regarded as an=ax(1+ac,/N), by=b.(1—bey/N).
the network’s proposal for the recollection= £, since for
autoassociation the set of key worglsaand the set of recol- The reference straight line is defined by the offset
lections 7 coincide. =—3.77(18) and the slope.=28.21), which are obtained
The Hopfield network is a complex dynamical system andby fitting the above scaling law. Now we determine indepen-
it is not possible to calculate th&(P). Therefore we will  dently for each system si2é¢=2000 the point of intersection
estimate the real information loss with the help of the nu-(a.,i;) with the reference straight line. Figure 3 demon-
merically determined overlap spectrut@8) via Eq. (21). strates that the points of intersection are equal within the
Afterwards a finite size scaling analysis of the estimated reastatistical errors for all system sizes, which proves the finite
information loss is performed which leads to an accuratesize law we mentioned above. The law justifies the fitting of
estimation of the storage capacity,. We use the whole acommonpoint of intersection defining the storage capacity
spectrum of the overlap because in finite systems the overlag, and critical information loss per spig.
distribution has a double peak structure due to small remnant For the determination of the common point of intersection
overlaps[7-9] indicating that the average of the overlap is we minimizey?. Due to the requirement of a common point
not sufficient. of intersection this consists in a nonlinear problem, for which
The numerical estimation of the real information loss iswe used the program described in REi2]. The fitted
performed as follows: At firgp= N equally distributed pat- straight lines are plotted as dotted lines in Fig. 4. The values
ternsé*, u=1, ... p are generated and stored in the synap-of «. andi obtained from the fit are given in Table |. From
tic matrix by Eq.(25). Then we start from the noisy version the error matrix of the fit parameters we calculated the one
s? of the patterné” and iterate dynamic&3) until a stable  standard deviation error ellipse aroung(i.) shown in the
states” is reached. After the iteration the overlap betweeninset of Fig. 4.
the network state and the original pattern is measured. By To compare our values faj, with replica theory we need
doing this for every pattern from several pattern sets we caa calculation of , from replica theory. This can be achieved
determine the overlap spectru(@8 and from Eq.(21) an by the observation, that in this theory the overlap distribution

SiH—l
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FIG. 2. Offsetay and slopeby of the information loss fitted in the region 0.13%%=<0.1452 as a function of . The solid lines are

linear fits of the data foN=2000. The reference straight line of the information loss is defined by offset—3.77 and slopé,,
=28.2 at IN=0.

—4.0 PR TS R B

is sharply peaked around its mean valméa) either little  trapolate to infinite system sizes correctly, then we predict
less than one in the retrieval phase or zero in the spin glagbe information loss to behave as

phase. In this case both upper bounds according to (Efks.

and(22) become equal fol— <, and we can calculaig by in(@)=igtb.(a—as)+O[(a—ag)?] (26)
insertingm( ) known from the replica theory into E¢16).

The resulting =i, from the replica symmetric theofy]is  for a=a.. The values

shown in Fig. 4 as a dashed curve. Simgx) jumps dis-

continuously atw,=0.137905 fromm(a.)=0.967 tom(«) b,.=28.21), «a.=0.13794), i.,=0.12X7)

=0 for a>a. due to a first order phase transitioiy,

changes from»=0.12 ata. to in=1 for a>a.. The ana- are obtained from the slope of the reference straight line and
lytical results fora. andi, of the replica symmetryRS), the  the common point of intersection. Since the information loss
one (1RSB), and the two sted2RSB) replica symmetry has a finite slope at., there is no discontinuity in the in-
breaking calculation are presented in Table I. formation loss as predicted by replica theory.

Our determination of the storage capacity considers These two observations indicate that the remnant overlaps
remnant overlap&he information loss depends on the whole influence the storage behavior of the Hopfield model consid-
overlap distributiopwhile previous numerical investigations erably, which should be further investigated by numerical
[7-9] use the retrieval rate for the determination ®f, and analytical calculations. If an analytical theory which
which does not include remnant overlaps. In contrast to thatakes remnant overlaps into account could be worked out it
numerical work our value for the storage capacity is  should be possible to calculate an information loss based on
slightly below the analytical value obtained from 2RSB cal-the whole overlap distribution. The behavior of that informa-
culations. This indicates that the consideration of small remtion loss could be compared to E@6).
nant overlaps lowers the storage capacity of the Hopfield

model. , , , VI. CONCLUDING REMARKS
If the assumption that the information loss can be de-
scribed by straight lines fow € [0.1375,0.1452is true and In the present paper we have introduced a universal per-

the system sizes investigated here are large enough to efermance measure for associative memories called informa-
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FIG. 3. Paints of intersectiona(; i) of the fitted information losses fd¥=2000 with the reference straight line as a function d.1/
The constant solid linea,=0.13797 and.=0.1217 are obtained by fitting a constant to the data.

tion loss. It is derived from information theoretical concepts.discussed here. Provided appropriate observables have been
Our method for getting upper bounds of the real informationchosen, these bounds can also be used for the numerical
loss by measuring observables allows the application to mordetermination of the storage capacity with high precision as
complex systemse.g., biological neural netshan the ones we have demonstrated for the Hopfield model.
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o
FIG. 4. The data points show the numerical estimate of the real information loss péj, épirthe Hopfield model as a function of the
load parametew for different system sizedl. The dotted lines correspond to straight line fits fé&=2000 with a common point of
intersection at &.,ic). The solid line is the reference straight line obtained from Fig. 2. The dashed curve reprggaeticted by the

replica symmetric theory for infinite system sizes. The insert gives a magnified view asguindluding the error ellipse. For comparison
the 2RSB values for the storage capacityand the information loss per spin at from Ref.[14] are indicated by a filled diamond.
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If correlations are introduced to the stored patterns thevhich in deed leave the stored information constant. The
information contained in the patterns decreases. This lead€sults will be published in a forthcoming pagés].
directly to the important question whether there are existing
learning mechanisms such that ttered informatiorspeci- LSS
fied in this paper remains constant. In our research on corre- We would like to thank Gerhard Scheffler for his interest
lated patterns we have found explicit learning mechanismand valuable discussions.
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