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Information theoretical performance measure for associative memories and its application to
neural networks
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~Received 15 September 1997; revised manuscript received 5 January 1999!

We present a general performance measure~information loss! for associative memories based on informa-
tion theoretical concepts. This performance measure can be estimated, provided that mean values of observ-
ables have been determined for the associative memory. Then the estimation guarantees a minimal association
quality. The formalism allows the application of the performance measure to complex systems where the
relation between input and output of the associative memory is not explicitly known. Here we apply our
formalism to the Hopfield model and estimate the storage capacityac from the numerically determined
information loss. In contrast to other numerical methods the whole overlap distribution is taken into account.
Our numerical valueac50.1379(4) for the storage capacity in the Hopfield model is below numerical values
obtained previously. This indicates that the consideration of small remnant overlaps lowers the storage capacity
of the Hopfield model.@S1063-651X~99!02008-5#

PACS number~s!: 87.10.1e, 07.05.Mh, 84.35.1i, 89.70.1c
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I. INTRODUCTION

The advantage of associative memories where the data
stored in a spatially distributed way is the robustness aga
noisy input data on the one hand. On the other hand, du
the spatial distribution architecture these memories reco
the associated data with some retrieval error. So a strict
son might conclude that the memory is useless. But in
situations the associative memory~AM ! is often used as a
preprocessor followed by some classification or decision p
cess. For such processes a faulty output of the associ
memory still could be valuable. In this paper we derive
general criterion for the quality of an associative memo
considering also large retrieval errors.

Section II starts with a general description of an asso
tive memory. Based on this description we formulate the r
information loss. This quantity is by Shannon’s theore
@1,2# closely related to the minimal expected number
yes-no questions needed to specify the recollection when
AM’s output is given. In the literature it is also known a
conditional information@1#.

Unfortunately in most of the cases the associat
memory is too complex and it is not possible to calculate
real information loss. Therefore we show, in Sec. III, ho
the real information loss can be estimated from above
measuring expectation values of observables.

In Sec. IV we choose the overlap between the associa
memory’s output and the recollection as a concrete obs
able and give an upper bound of the information loss both
the averaged overlap and the whole spectrum of the ove
The results of Sec. IV are then applied~Sec. V! to a special
neural associative memory model—the Hopfield model@3#.
First we argue that the whole overlap spectrum is neces
to characterize the storage behavior. Then the informa
loss is estimated from the numerically determined over
spectrum. The improved sensitivity of our estimate of t
information loss allows for a finite size analysis leading to
precise numerical determination of the storage capacityac in
the Hopfield model.
PRE 601063-651X/99/60~2!/2141~7!/$15.00
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II. DESCRIPTION OF ASSOCIATIVE MEMORY

In this section we will present a general description of
associative memory and show how to measure its qua
We regard an AM as a stochastic system described by
probabilityMjI ,hI

(s`us0) that the AM responds to an inputs0

out of a setK of key words with an outputs` out of a setR
of recollections. The probability depends onp previously
learned patterns„(j1,h1),...,(jp,hp)… each of them consist
ing of a key word jm and a recollection hm

„jIª(j1,...,jp), hI ª(h1,...,hp)…

(
s`PR

MjI ,hI
~s`us0!51. ~1!

The mapping assigning every pair~jI , hI ! its transition prob-

abilitiesMjI ,hI
(s`us0) is usually called the ‘‘learning rule.’’

Figure 1 sketches the typical situation an AM is used in.
In the learning process one pair (jI ,hI ) is chosen according

to a probability distributionPp and learned by the AM. After
the learning process has finished the association pro
starts: A pattern indexmP$1, . . . ,p% is chosen with prob-
ability 1/p and the key wordjm is sent through a noisy
channelN(s0ujm).

(
k8PK

N~k8uk!51 for every kPK. ~2!

The AM receives a noisy versions0 of the chosen key word
jm with probabilityN(s0ujm). The patterns should have bee

FIG. 1. Association of single patterns (jm,hm) previously
learned by the AM.
2141 © 1999 The American Physical Society
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2142 PRE 60SCHLÜTER, KERSCHHAGGL, AND WAGNER
learned by the AM in a way that the associated recollect
s` contains much information aboutr 5hm. In order to
quantify this information we imagine a person at the out
of the AM knowing s` and having the task to specify th
original recollectionr. To achieve this goal the person
allowed to ask yes-no questions according to a question s
egy S. This question strategy assigns every pair (r ,s`) the
number lenS(r us`) of yes-no questions needed to specifyr
for given s`.

To measure the association quality we imagine an exp
ment consisting of one learning process followed by a cer
number of association processes. For this experiment,
average number of yes-no questions needed to specr
whens` is known does not depend on the number of as
ciation processes. It is given by

q~S!5(
r ,s`

P~r ,s`!lenS~r us`!, ~3!

where

P~r ,s`!5
1

p (
m,jI ,hI

Pp~jI ,hI !TjI ,hI
~s`ujm!dhm,r , ~4!

with

TjI ,hI
~s`ujm!ª(

s0
M~jI ,hI !~s`us0!N~s0ujm!.

If we define (logª log2)

F~P!ª2(
r ,s`

P~r ,s`!log P~r us`!, ~5!

with the conditional probability

P~r us`!5P~r ,s`!Y (
r

P~r ,s`!,

Shannon’s noiseless coding theorem~see Ref.@2#, pp. 15 and
16! yields

F~P!<minq~S!<F~P!11, ~6!

where the minimum is taken over all possible question st
egiesS.

ThusF(P) has something to do with the minimal avera
number of yes-no questions needed to specify the orig
patternr when the outputs` of the AM is known. We will
therefore takeF(P) to measure the quality of an AM an
call it ‘‘real information loss.’’ Now the stored information
I s is defined as

I s5p@ I R2F~P!#, ~7!

which is the information about the patterns available fro
the AM. Here

I R52(
r

P~r !log P~r !, ~8!
n
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with P(r )5(1/p)(hI ,mPp(hI )d r ,hm is the Shannon entropy
belonging to the experiment where the AM’s output is u
known @Pp(hI )5(jI

Pp(jI ,hI )#.
F can also be used to measure the likelihood of two

namical systems, where one of them is a ‘‘black box’’ a
the other is established to model the black box. IfP(r ,s`) is
the probability that the black box and the model are in
statesr and s`, respectively,F(P) can directly be inter-
preted as a quality measure for the model.

In previous publications on neural associative mem
@4,5# a quantity called ‘‘missing information’’ was suggeste
to regard small retrieval errors. This quantity is an estimat
of F(P) with respect to special observables. This will b
come clear in Sec. IV. In the next section we will show ho
an estimation of the real information loss is connected
everypossible choice of observables. Here the real inform
tion lost in the association process is transparently wor
out and by Shannon’s noiseless coding theorem related to
real information lossF(P) @see Eq.~6!#.

III. ESTIMATION OF THE INFORMATION LOSS BY
MEASURING OBSERVABLES

In most of the cases the relationMjI ,hI
(s`us0) between the

input s0 and the outputs` of the AM is too complex to
calculate the real information loss. Therefore we show in t
section how to estimate the real information loss from abo
by the knowledge of mean valuesEi of l observables
Oi(r ,s`)

Ei5^Oi&5(
r ,s`

P~r ,s`!Oi~r ,s`!, i 51, . . . ,l . ~9!

These equations together with the normalization ofP(r ,s`)
build the constraints for the maximization of the real info
mation loss.

We defineW to be the set of mappings fromR3R to
#0,1@ and the functionalF(P) with PPW is given by Eq.
~5!. The constraints form the restricted set of mappings:

AO,E5$PPWuEi5^Oi&, i 51, . . . ,l , 15^1&%.
~10!

The maximization of the information loss with respect to t
constraints means the maximization ofF on the setAO,E .

We will use the following theorem to solve this maxim
zation task.

Theorem III.1. For every distributionP* PAO,E the fol-
lowing statement holds:P* maximizesF on AO,E if and
only if there exist real numbersl1 ,...,l l andZ.0 such that
the conditional distribution ofP* has the form

P* ~r us`!5
1

Z
expS 2(

i 51

l

l iOi~r ,s`!D . ~11!

Since P* (r us`) depends exponentially on the observab
and P* PAO,E ,F(P* ), we get for everyPPAO,E the in-
equality

F~P!<F~P* !5S ln Z1(
i 51

l

l iEi D Y ln 2. ~12!
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This inequality allows the estimation of the real informati
loss from above.

The relations~11! and ~12! are similar to the entropy
maximization subject to observable constraints well kno
in the literature@6#. One direction of theorem III.1 can b
proven with the theorem about the Lagrange multipliers a
the other direction uses the inequality logx<(x21)/ln 2. The
Lagrange multipliersl1 ,...,l l and lnZ result from the con-
straints@Eq. ~9! and the normalization ofP(r ,s`)#.

The real information loss differs from the convention
entropy because the logarithm in Eq.~5! has the conditiona
probability P(r us`) instead ofP(r ,s`) as argument. As a
consequence the maximal value of the real information l
F(P* ) depends only on theconditionalprobability distribu-
tion @see Eq.~12!# and a probability distribution satisfying
the constraints and maximizingF is determined uniquely
only up to its conditional distribution.

Since in practical applications the true distributio
P(r ,s`) will not be known, one uses the measured valuesEi
of the observablesOi(r ,s`) and applies the theorem III.1 t
obtain via Eq.~12! an upper bound forF(P). In the next
section we demonstrate this procedure by two~representa-
tive! examples of observables.

IV. THE OVERLAP

For the examples of observables we considerr, s` to be
Ising spin configurations, e.g.,R5$11,21%N. An obvious
observable for estimating the information loss is the over

O~r ,s`!5
1

N (
i 51

N

r isi
` ~13!

between the AM’s outputs` and the original recollectionr.
For given average

m̄5^O~r ,s`!& ~14!

of O, with m̄Þ61 we choose for P* (r ,s`)
5P(s`)P* (r us`) the conditional distribution to be

P* ~r us`!5)
i 51

N
1

2
~11m̄si

`r i ! ~15!

with arbitraryP(s`).0.
Since bothP* (r us`) and O(r ,s`) depend only on the

productr isi
` , the constraint~14! is satisfied. The distribution

~15! can be written in the form~11! with m̄52tanhl and
Z5@2 cosh(l/N)#N, which leads by theorem III.1 to the uppe
boundF(P* )5 i m̄N with

i m̄512
1

2
@~12m̄!log~12m̄!#2

1

2
@~11m̄!log~11m̄!#

~16!

for the real information lossF(P). The ‘‘missing informa-
tion’’ for neural associative memory discussed in Refs.@4,5#
would result from theorem III.1 if the average network a
pattern magnetization are determined in addition to the a
age overlap~14!. These additional observables lead to
upper bound of the real information loss slightly less th
Eq. ~16! for biased patterns.
n
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If the overlap distribution has a complicated structure~for
example, in the Hopfield model@7–9#! it is not sufficiently
represented by its averagem̄. In these situations both Eq
~16! and the quantity discussed in Refs.@4,5# lead to a poor
estimation of the real information loss. Therefore we choo
as our second example the observables

Om~r ,s`!5dNm,(r i si
`, ~17!

where m5122k/N, kP$0, . . . ,N%. Averaging these ob-
servables leads to the overlap distribution

r~m!5^Om~r ,s`!&, ~18!

where ther(m)’s have to be identified with theEi ’s in Eq.
~9!.

In order to apply theorem III.1 we write the condition
distribution in the form of Eq.~11!:

P* ~r us`!5
1

Z
expS 2(

m
l~m!Om~r ,s`! D , ~19!

whereZ andl(m) have to be chosen such thatP* (r ,s`) is
normalized and satisfies the constraints~18!. The normaliza-
tion and the constraints~18! are satisfied if

Z.0

and

e2l~m!5Z
r~m!

g~m!
, ~20!

with

g~m!5S N
~N2mN!/2D .

Now theorem III.1 states that the distribution~19! maximizes
the real information loss. The upper boundF(P* )5 i rN
with

i r5
1

N (
m

r~m!log
g~m!

r~m!
~21!

for the real information loss can be obtained from Eq.~12!.
To see the possibly substantial improvement of the bo

~21! over Eq.~16!, we expandg(m) for large N according
Stirling’s formula and obtain

i r.(
m

r~m!F12
1

2
~12m!log~12m!2

1

2
~11m!

3 log~11m!G2
1

N (
m

r~m!logr~m!. ~22!

The first term is a sum overm of terms as in Eq.~16!
weighted with the probabilityr(m). Since the right hand
side of Eq.~16! is a concave function ofm̄ the first term of
Eq. ~22! is always less than or equal toi m̄ because of Jensen
inequality. The second term in Eq.~22! is always bounded
from above by log(N11)/N which becomes negligible fo
N˜`. Thus the determination of the whole overlap dist
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bution r(m) may reduce the upper bound considerably,
pecially if the overlap has a bimodal distribution. The upp
bound ~21! for the real information loss cannot be derive
from the considerations in previous publications@4,5#.

V. APPLICATION TO NEURAL ASSOCIATIVE
MEMORIES

We want to apply our formalism to neural associati
memories. These memories usually recall the stored
with some retrieval error, which is related to the quality
the associative memory. In our formalism the retrieval er
is quantified by the real information loss. As an example
neural associative memory we choose the Hopfield mode@3#
and estimate its storage capacity with the help of the num
cally determined overlap spectrum~18!. In the Hopfield
model the pattern statistic is given byPp(jI ,hI )522pNdjI ,hI

,
which means autoassociation of equally distributed patte
The network is a dynamical system evolving according t

si
t115sgnhi

t , ~23!

with

hi
t5(

j Þ i
wi j sj

t , ~24!

where only one neuron is updated per time step~asynchro-
nous dynamics!. The patterns are stored in the synaptic m
trix w by the Hebb rule@3,10#:

wi j 5
1

N (
m51

p

j i
mj j

m . ~25!

This learning prescription is motivated by Hebb’s postul
about learning@11#. The convergence of the network statest

to a fixpoints` is guaranteed because of the symmetry of
synaptic matrix. The stable fix points` is then regarded a
the network’s proposal for the recollectionr 5jm, since for
autoassociation the set of key wordsjI and the set of recol-
lectionshI coincide.

The Hopfield network is a complex dynamical system a
it is not possible to calculate theF(P). Therefore we will
estimate the real information loss with the help of the n
merically determined overlap spectrum~18! via Eq. ~21!.
Afterwards a finite size scaling analysis of the estimated
information loss is performed which leads to an accur
estimation of the storage capacityac . We use the whole
spectrum of the overlap because in finite systems the ove
distribution has a double peak structure due to small remn
overlaps@7–9# indicating that the average of the overlap
not sufficient.

The numerical estimation of the real information loss
performed as follows: At firstp5aN equally distributed pat-
ternsjm, m51, . . . ,p are generated and stored in the syna
tic matrix by Eq.~25!. Then we start from the noisy versio
s0 of the patternjm and iterate dynamics~23! until a stable
states` is reached. After the iteration the overlap betwe
the network state and the original pattern is measured.
doing this for every pattern from several pattern sets we
determine the overlap spectrum~18! and from Eq.~21! an
-
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upper bound for the real information loss. The error ofi r has
been calculated from the fluctuation of the mean valuesi r

calculated for one set according to Eq.~21!. In Fig. 4 the
upper bound of the real information loss per spin is presen
for different system sizes as a function ofa.

We have no theoretical founded finite size scaling law
used in Refs.@7–9#. However, based on the system siz
investigated here we can show the following finite size la
If for a given system sizeN the information loss can be
described by straight linesi N(a)5aN1bNa for a
P@0.1375,0.1452#, then there exists a loading parameterac
where the information loss for all system sizesN>2000 is
equal to some valuei c .

First we determine a reference straight line by fitting
dependently offsetaN and slopebN of the information loss
for the simulated system sizes and extrapolate them to
nite system sizes. The fitted slopes and offsets are plotte
Fig. 2 vs 1/N. From Fig. 2 we see that all system sizes exc
the smallest one (N51000) satisfy the scaling law

aN5a`~11acorr/N!, bN5b`~12bcorr/N!.

The reference straight line is defined by the offseta`

523.77(18) and the slopeb`528.2(1), which are obtained
by fitting the above scaling law. Now we determine indepe
dently for each system sizeN>2000 the point of intersection
(ac ,i c) with the reference straight line. Figure 3 demo
strates that the points of intersection are equal within
statistical errors for all system sizes, which proves the fin
size law we mentioned above. The law justifies the fitting
a commonpoint of intersection defining the storage capac
ac and critical information loss per spini c .

For the determination of the common point of intersecti
we minimizex2. Due to the requirement of a common poi
of intersection this consists in a nonlinear problem, for wh
we used the program described in Ref.@12#. The fitted
straight lines are plotted as dotted lines in Fig. 4. The val
of ac and i c obtained from the fit are given in Table I. From
the error matrix of the fit parameters we calculated the o
standard deviation error ellipse around (ac ,i c) shown in the
inset of Fig. 4.

To compare our values fori r with replica theory we need
a calculation ofi r from replica theory. This can be achieve
by the observation, that in this theory the overlap distribut

TABLE I. Different results for the storage capacityac , the
average overlapm̄, and upper bounds for the information loss p
spin i c at ac . In the upper part of the table the analytical results
the replica symmetry~RS!, the one ~1RSB!, and the two step
~2RSB! replica symmetry breaking calculation are presented. In
lower part numerical estimates are given.

RS @7# 1RSB @13# 1RSB @14# 2RSB @14#

ac 0.137905 0.144 0.138186 0.138187
m̄(ac) 0.967417 0.982 0.966777 0.966776

i c 0.120078 0.074 0.121967 0.121970

@8# @9# present paper
ac 0.143~1! 0.1420~15! 0.1379~4!

i c 0.121~7!
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FIG. 2. OffsetaN and slopebN of the information loss fitted in the region 0.1375<a<0.1452 as a function of 1/N. The solid lines are
linear fits of the data forN>2000. The reference straight line of the information loss is defined by offseta`523.77 and slopeb`

528.2 at 1/N50.
la

le
s

th

al
m
e

de

e

ict

and
ss

-

laps
id-

cal
ch
t it
on

a-

per-
ma-
is sharply peaked around its mean valuem̄(a) either little
less than one in the retrieval phase or zero in the spin g
phase. In this case both upper bounds according to Eqs.~16!
and~22! become equal forN˜`, and we can calculatei r by
insertingm̄(a) known from the replica theory into Eq.~16!.
The resultingi m̄5 i r from the replica symmetric theory@7# is
shown in Fig. 4 as a dashed curve. Sincem̄(a) jumps dis-
continuously atac.0.137905 fromm̄(ac).0.967 tom̄(a)
50 for a.ac due to a first order phase transition,i m̄
changes fromi m̄.0.12 atac to i m̄51 for a.ac . The ana-
lytical results forac andi c of the replica symmetry~RS!, the
one ~1RSB!, and the two step~2RSB! replica symmetry
breaking calculation are presented in Table I.

Our determination of the storage capacityac considers
remnant overlaps~the information loss depends on the who
overlap distribution! while previous numerical investigation
@7–9# use the retrieval rate for the determination ofac ,
which does not include remnant overlaps. In contrast to
numerical work our value for the storage capacityac is
slightly below the analytical value obtained from 2RSB c
culations. This indicates that the consideration of small re
nant overlaps lowers the storage capacity of the Hopfi
model.

If the assumption that the information loss can be
scribed by straight lines foraP@0.1375,0.1452# is true and
the system sizes investigated here are large enough to
ss

at

-
-

ld

-

x-

trapolate to infinite system sizes correctly, then we pred
the information loss to behave as

i `~a!5 i c1b`~a2ac!1O@~a2ac!
2# ~26!

for a>ac . The values

b`528.2~1!, ac50.1379~4!, i c50.121~7!

are obtained from the slope of the reference straight line
the common point of intersection. Since the information lo
has a finite slope atac , there is no discontinuity in the in
formation loss as predicted by replica theory.

These two observations indicate that the remnant over
influence the storage behavior of the Hopfield model cons
erably, which should be further investigated by numeri
and analytical calculations. If an analytical theory whi
takes remnant overlaps into account could be worked ou
should be possible to calculate an information loss based
the whole overlap distribution. The behavior of that inform
tion loss could be compared to Eq.~26!.

VI. CONCLUDING REMARKS

In the present paper we have introduced a universal
formance measure for associative memories called infor
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FIG. 3. Points of intersection (ac ,i c) of the fitted information losses forN>2000 with the reference straight line as a function of 1/N.
The constant solid linesac50.13797 andi c50.1217 are obtained by fitting a constant to the data.
ts
io
o

been
rical
as
tion loss. It is derived from information theoretical concep
Our method for getting upper bounds of the real informat
loss by measuring observables allows the application to m
complex systems~e.g., biological neural nets! than the ones
.
n
re

discussed here. Provided appropriate observables have
chosen, these bounds can also be used for the nume
determination of the storage capacity with high precision
we have demonstrated for the Hopfield model.
e

n

FIG. 4. The data points show the numerical estimate of the real information loss per spini r for the Hopfield model as a function of th
load parametera for different system sizesN. The dotted lines correspond to straight line fits forN>2000 with a common point of
intersection at (ac ,i c). The solid line is the reference straight line obtained from Fig. 2. The dashed curve representsi r predicted by the
replica symmetric theory for infinite system sizes. The insert gives a magnified view aroundac including the error ellipse. For compariso
the 2RSB values for the storage capacityac and the information loss per spin atac from Ref. @14# are indicated by a filled diamond.
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If correlations are introduced to the stored patterns
information contained in the patterns decreases. This le
directly to the important question whether there are exist
learning mechanisms such that thestored informationspeci-
fied in this paper remains constant. In our research on co
lated patterns we have found explicit learning mechanis
A

s.
e
ds
g

e-
s

which in deed leave the stored information constant. T
results will be published in a forthcoming paper@15#.
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